
Verification of Description Logic

Knowledge and Action Bases

Babak Bagheri Hariri
1
, Diego Calvanese

1
, Giuseppe De Giacomo

2
,

Riccardo De Masellis
2
, Paolo Felli

2
, Marco Montali

1

Abstract. We introduce description logic (DL) Knowledge and Ac-
tion Bases (KAB), a mechanism that provides both a semantically
rich representation of the information on the domain of interest in
terms of a DL KB and a set of actions to change such information
over time, possibly introducing new objects. We resort to a variant
of DL-Lite where UNA is not enforced and where equality between
objects may be asserted and inferred. Actions are specified as sets of
conditional effects, where conditions are based on epistemic queries
over the KB (TBox and ABox), and effects are expressed in terms
of new ABoxes. We address the verification of temporal properties
expressed in a variant of first-order µ-calculus where a controlled
form of quantification across states is allowed. Notably, we show de-
cidability of verification, under a suitable restriction inspired by the
notion of weak acyclicity in data exchange.

1 Introduction

Recent work in business processes, services and databases is bring-
ing forward the need of considering both data and processes as first-
class citizens in process and service design [14, 29]. In particular,
the so called artifact-centric approaches, which advocate a sort of
middle ground between a conceptual formalization of dynamic sys-
tems and their actual implementation, are promising to be effective in
practice [12]. The verification of temporal properties in the presence
of data represents a significant research challenge, since data makes
the system infinite-state, and neither finite-state model checking [11]
nor most of the current technique for infinite-state model checking,
which mostly tackle recursion [6], apply to this case. Recently, there
have been some advancements on this issue [13, 4, 5], considering a
suitably constrained relational database settings.

The motivation for our work comes when we want to enrich data-
intensive business processes with a semantic level. This leads us to
look into how to combine first-order data, ontologies, and processes,
while maintaining basic inference tasks (specifically verification) de-
cidable. In this setting, we capture the domain of interest in terms
of a semantically rich language as those provided by ontological
languages based on Description Logics (DLs) [2]. Such languages
natively deal with incomplete knowledge in the modeled domain.
This additional flexibility comes with an added cost, however: differ-
ently from relational databases, to evaluate queries we need to resort
to logical implication. Moreover incomplete information combined
with the ability of evolving the system through actions results in a
notoriously difficult setting [30]. In particular, due to the nature of
DL assertions (which in general are not definitions but constraints

1 Free University of Bozen-Bolzano, Italy, email: lastname@inf.unibz.it
2 Sapienza Università di Roma, email: lastname@dis.uniroma1.it

on models), we get one of the most difficult kinds of domain descrip-
tions for reasoning about actions [26], which amounts to dealing with
complex forms of state constraints [18, 19]. To overcome this diffi-
culty, virtually all effective solutions presented in the literature are
based on a so-called “functional view of knowledge bases” [17]: the
KB provides the ability of querying based on logical implication, and
the ability of progressing it to a “new” KB through forms of updates
[3, 10]. Notice that this functional view is tightly related to an epis-
temic interpretation of the KB [8]. Indeed our work is also related to
that on Epistemic Dynamic Logic [28], and, though out of the scope
of this paper, the decidability results presented here could find appli-
cation in the context of that research as well.

We follow this functional view of KBs. However, a key point of
our work is that at each execution step external information is incor-
porated into the system in form of new objects (denoted by Skolem
terms), that is, our systems are not closed wrt the available infor-
mation. This makes our framework particularly interesting and chal-
lenging. In particular, the presence of these objects requires a specific
treatment of equality, since as the system progresses and new infor-
mation is acquired, distinct object terms may be inferred to denote
the same object.

Specifically, we introduce the so-called Knowledge and Action
Bases (KABs). A KAB is equipped with a TBox, expressed in a vari-
ant of DL-LiteA [9, 1], which extends the core of the Web Ontol-
ogy Language OWL 2 QL3 and is particularly well suited for data
management. Such a TBox captures intensional information on the
domain of interest, similarly to UML class diagrams or other con-
ceptual data models, though as a software component to be used at
runtime. The KAB includes also an ABox, which acts as a storage
or state. The ABox maintains the data of interest, which are accessed
by relying on query answering based on logical implication (certain
answers). Notably, our variant of DL-LiteA is without UNA, since,
as discussed above, we cannot have UNA for Skolems, and we al-
low for explicit equality assertions in the ABox. Technically, this
breaks the first-order rewritability of DL-LiteA query answering, and
requires that, in addition to the rewriting process, inference on equal-
ity is performed. As a query language, we use unions of conjunctive
queries, possibly composing their certain answers through full FOL
constructs. This gives rise to an epistemic query language that asks
about what is “known” by the current KB [8]. The KAB then contains
actions whose execution changes the state of the KB, i.e., its ABox.
Such actions are specified as sets of conditional effects, where condi-
tions are (epistemic) queries over the KB and effects are expressed in
terms of new ABoxes. Actions have no static pre-conditions, instead

3 http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/

a process is used to specify which actions can be executed at each
step. For simplicity, we model such processes as condition/action
rules, where the condition is again expressed as a query over the KB.

In this setting, we address the verification of temporal/dynamic
properties expressed in a first-order variant of µ-calculus [24, 27],
where atomic formulae are queries over the KB that can refer both to
known and unknown objects, and where a controlled form of quan-
tification across states is allowed. Notice that all previous decidabil-
ity results on actions over DL KBs assumed that no information is
coming from outside of the system, in the sense that no new ob-
jects are added while executing actions [3, 10]. In this paper, instead,
we allow for arbitrary introduction of new objects. Unsurprisingly,
we show that even for very simple KABs and temporal properties,
verification is undecidable. However, we also show that for a very
rich class of KABs, verification is indeed decidable and reducible
to finite-state model checking. To obtain this result, following [4],
we rely on recent results in data exchange on the finiteness of the
chase of tuple-generating dependencies [15], though, in our case, we
need to extend the technique to deal with (i) incomplete information;
(ii) inference on equality; (iii) quantification across states in the ver-
ification language. Proofs are dropped for brevity.

2 Knowledge Base Formalism

For expressing knowledge bases, we use DL-LiteNU, a variant of the
DL-LiteA language [25, 7] in which we drop the unique name as-
sumption (UNA) [1]. The syntax of concept and role expressions in
DL-LiteNU is as follows:

B −→ N | ∃R
C −→ B | ¬B

R −→ P | P−

V −→ R | ¬R

where N denotes a concept name, P a role name, and P− an inverse
role. A DL-LiteNU knowledge base (KB) is a pair (T,A), where:
• T is a TBox, i.e., a finite set of TBox (inclusion and functionality)

assertions of the form B � C | R � V | (funct R), and
• A is an Abox, i.e., a finite set of ABox (membership and equality)

assertions of the form N(t1) | P (t1, t2) | t1 = t2, where t1, t2
denote individuals.

As usual in DL-Lite, a TBox may contain neither (funct P) nor
(funct P−) if it contains R � P or R � P−, for some role R.

We adopt the standard FOL semantics of DLs based on FOL in-
terpretations I = (∆I , ·I) such that cI ∈ ∆I , NI ⊆ ∆I , and
P I ⊆ ∆I ×∆I . The semantics of the construct, of TBox and ABox
assertions, and the notions of satisfaction and of model are as usual.
We also say that A is consistent wrt T if (T,A) is satisfiable, i.e.,
admits at least one model.

Next we introduce queries. As usual (cf. OWL 2), answers to
queries are formed by terms denoting individuals explicitly men-
tioned in the ABox. The domain of an ABox A, denoted by
ADOM(A), is the (finite) set of terms appearing in A. A union of
conjunctive queries (UCQ) q over a KB (T,A) is a FOL formula
of the form ∃�y1.conj 1(�x, �y1) ∨ · · · ∨ ∃�yn.conjn(�x, �yn), with free
variables �x and existentially quantified variables �y1, . . . , �yn. Each
conj i(�x, �yi) in q is a conjunction of atoms of the form N(z),
P (z, z�), where N and P respectively denote a concept and a role
name occurring in T , and z, z� are constants in ADOM(A) or vari-
ables in �x or �yi, for some i ∈ {1, . . . , n}. The (certain) answers to
q over (T,A) is the set ans (q, T,A) of substitutions4 σ of the free

4 As customary, we can view each substitution simply as a tuple of constants,
assuming some ordering of the free variables of q.

variables of q with constants in ADOM(A) such that qσ evaluates to
true in every model of (T,A). If q has no free variables, then it is
called boolean and its certain answers are either true or false.

Theorem 1 ([1]) Computing ans (q, T,A) of an UCQs q over a KBs
(T,A) is PTIME-complete in the size of T and A.

We also consider an extension of UCQs, called ECQs, which are
queries of the query language EQL-Lite(UCQ) [8], that is, the FOL
query language whose atoms are UCQs evaluated according to the
certain answer semantics above. An ECQ over T and A is a possibly
open formula of the form (where q is a UCQ):

Q −→ [q] | [x = y] | ¬Q | Q1 ∧Q2 | ∃x.Q

The answer to Q over (T,A), is the set ANS(Q,T,A) of tuples of
constants in ADOM(A) defined by composing the certain answers
ans (q, T,A) of UCQs q through first-order constructs, and inter-
preting existential variables as ranging over ADOM(A). Following
the line of the proof in [8], but considering Theorem 1 for the basic
step of evaluating an UCQ, we get:

Theorem 2 Computing ANS(Q,T,A) of an ECQs Q over a KBs
(T,A) is PTIME-complete in the size of T and A.

We close by recalling that DL-Lite enjoys the FO rewritabil-
ity property, which in our setting says that for every UCQ q,
ans (q, T,A) = ans (rew(q), ∅, A), where rew(q) is a UCQ com-
puted by the reformulation algorithm in [9]. Notice that, in this way,
we have “compiled away” the TBox, though we still need to do logi-
cal implication w.r.t. ABox, which contains equality assertions. This
result can be extended to ECQs as well [8].

3 Knowledge and Action Bases

A Knowledge and Action Base (KAB) is a tuple K = (T,A0,Γ,Π)
where T and A0 form the knowledge component (or knowledge
base), and Γ and Π form the action component (or action base). In
practice, K is a stateful device that stores the information of interest
into a KB, formed by a fixed TBox T and an initial ABox A0, which
can evolve by executing actions Γ according to the sequencing estab-
lished by process Π. We describe such components in detail.
TBox. T is a DL-LiteNU TBox, used to capture the intensional knowl-
edge about the domain of interest. Such a TBox is fixed once and for
all, and does not evolve during the execution of the KAB.
ABox. A0 is a DL-LiteNU ABox, which stores the extensional infor-
mation of interest. Notice that A0 is the ABox of the initial state of
the KAB, and as the KAB evolves due to the effect of actions, the
ABox, which is indeed the state of the system, evolves accordingly
to store up-to-date information. Through actions, we acquire new in-
formation from the external world, which results in new individuals.
These individuals are denoted by (ground) Skolem terms. The pres-
ence of Skolem terms has an impact on the treatment of equality,
since in principle we need to close equality w.r.t. congruence, i.e., if
a = b holds, then also f(a) = f(b) must hold. Closure w.r.t. con-
gruence generates an infinite number of logically implied equality
assertions. However, we are going to keep such assertions implicit,
computing them only when needed. Observe that, given two complex
terms verifying their equality requires a PTIME computation.
Actions. Γ is a finite set actions. An action γ ∈ Γ modifies the cur-
rent ABox A by adding or deleting assertions, thus generating a new
ABox A�. γ is constituted by a signature and an effect specification.

The action signature is constituted by a name and a list of individual
input parameters. Such parameters need to be instantiated with indi-
viduals for the execution of the action. Given a substitution θ for the
input parameters, we denote by γθ the instantiated action with the
actual parameters coming from θ. 5 The effect specification consists
of a set {e1, . . . , en} of effects, which take place simultaneously. An
effect ei has the form [q+i] ∧Q−

i � A�
i, where

• q+i is an UCQ, and Q−
i is an arbitrary ECQ whose free variables

occur all among the free variables of q+i ;6

• A�
i is a set of facts (over the alphabet of T) which include as terms:

individuals in A0, free variables of q+i , and Skolem terms f(�x)
having as arguments free variables �x of q+i .

Given the current ABox A of K and a substitution θ for the parame-
ters of the action γ, the new state A� resulting from firing the action
γ with parameters θ on the state A, is computed as follows: (i) each
effect ei ∈ γ extracts from A the set ANS(([q+i] ∧ Q−

i)θ, T, A)
of tuples of terms in ADOM(A), and for each such tuple σ asserts
a set A�

iθσ of facts obtained from A�
iθ by applying the substitu-

tion σ for the free variables of q+i . For each Skolem term f(�x)θ
appearing in A�

iθ, a new ground term is introduced having the
form f(�x)θσ. These terms represent new “constants” denoting “un-
known” individuals. We denote by eiθ(A) the overall set of facts,
i.e., eiθ(A) =

�
σ∈ANS(([q+i]∧Q−

i)θ,T,A) A
�
iθσ. (ii) Moreover, let

EQ(A) = {t1 = t2 | �t1, t2� ∈ ANS([x1 = x2], T, A)}. Observe
that, due to the semantics of queries, the terms in EQ(A) must ap-
pear explicitly in ADOM(A), that is, the possibly infinite number of
equalities due to congruence do not appear in EQ(A), though they are
logically implied. The overall effect of the action γ with parameter
substitution θ over A is the new ABox A� = DO(T,A, γθ) where
DO(T,A, γθ) = EQ(A) ∪

�
1≤i≤n eiθ(A).

Let us make some observations on such actions. The effects of
an action are a form of update of the previous state 7, and not of
belief revision [16]. That is, we never learn new facts on the state
in which an action is executed, but only on the state resulting from
the action execution. Skolem terms introduced by actions effects can
be though of witnesses of new information coming from an external
user/environment when executing the action. Their presence makes
the domain of the ABoxes obtained by executing actions continu-
ously changing. For simplicity, we do not make any persistence (or
frame) assumption in our formalization (except for equality) [26]. In
principle at every move we substitute the whole old state, i.e., ABox,
with a new one. On the other hand, it should be clear that we can
easily write effect specifications that copy big chunks of the old state
into the new one. For example, P (x, y) � P (x, y) copies the en-
tire set of assertions involving the role P . We do have a persistence
assumption on equalities, we implicitly copy all equalities holding
in the current state to the new one. This implies that, as the system
evolves, we acquire new information on equalities between terms,
but never lose equality information already acquired.

Process. The process component of a KAB is a possibly nondeter-
ministic program that uses the KAB ABoxes to store its (intermediate
and final) computation results, and the actions in Γ as atomic instruc-
tions. The ABoxes can be arbitrarily queried through the KAB TBox

5 We disregard a specific treatment of the output to the user, and assume
instead that she can freely pose queries over the KB, extracting implicit or
explicit information from the states through which the KAB evolves.

6 The UCQ-ECQ division is a convenience to have readily available the pos-
itive part of the condition.

7 Our approach sidesteps the semantical and computational difficulties of de-
scription logic knowledge base update [20]. Adopting such forms of update
in our setting is an interesting research issue.

Character City

Superhero Villain

livesIn
enemy
defeats

alterEgo
0..1 0..1

Figure 1. KAB’s TBox for Example 1

T , while they can be updated only through actions in Γ. There are
many ways to specify processes. We adopt a rule-based specification.

A process is a finite set Π of condition/action rules. A condi-
tion/action rule π ∈ Π is an expression of the form Q �→ γ, where γ
is an action in Γ and Q is an ECQ over T , whose free variables are
exactly the parameters of γ. The rule expresses that, for each tuple
θ for which condition Q holds, the action γ with actual parameters
θ can be executed. Processes do not force the execution of actions
but constrain them: the user of the process will be able to choose
any action that the rules forming the process allow. Moreover, our
processes inherit entirely their states from the KAB knowledge com-
ponent (TBox and ABox), see e.g., [12]. Other choices are also pos-
sible: the process could maintain its own state besides the one of the
KAB. As long as such an additional state is finite, or embeddable into
the KAB itself, the results here would easily extend to such a case.

Example 1 Let us consider a KAB K = (T,A0,Γ,Π) describing a
super-heroes comics world, where we have cities in which characters
live. Figure 1 shows a UML representation of the TBox T (see [7] for
the correspondence between DL-LiteA and UML). Characters can be
superheroes or (super)villains, who fight each other. As in the most
classic paradigm, superheroes help the endeavors of law enforcement
fighting villains threatening the city they live in. In fact, as a villain
reveals himself for perpetrating his nefarious purposes against the
city’s peace, he consequently becomes a declared enemy of all su-
perheroes living in that city. Each character can live in one city at the
time. A common trait of almost all superheroes is a secret identity: a
superhero is said to be the alter ego of some character, which is his
identity in common life. Hence, the ABox assertion alterEgo(s, p)
means that the superhero s is the alter ego of character p. Villains
always try to unmask superheroes, i.e., find their secret identity, in
order to exploit such a knowledge to defeat them. Notice the subtle
difference here: we use an alterEgo(s, p) assertion to model the fact
that s is the alter ego of p, whereas only by asserting s = p we can
capture the knowledge that s and p actually semantically denote the
same individual. Γ includes the following actions:

BecomeSH(p, c) :
{ [Character(p) ∧ ∃v.Villain(v) ∧ livesIn(v, c)]

� {Superhero(f(p)), alterEgo(f(p), p)}, CopyAll }

states that if there exists at least one villain living in the city c, a new
superhero f(p) is created, with the purpose of protecting c. Such
a superhero has p as alter ego. CopyAll is a shortcut for copying
everything in the new state.

Unmask(s, p) : { [alterEgo(p, s)] � {s = p}, CopyAll }

states that superhero s, who is the alter ego of p, gets unmasked by
asserting the equality between s and p (it is now known that s = p).

Fight(v, s) :
{ ∃p.[Villain(v) ∧ Character(p) ∧ alterEgo(s, p)] ∧ [s = p]

� {defeats(v, s)}, CopyAll }

states that when villain v fights superhero s, he defeats s if s has been

unmasked, i.e., it is known that s is equal to his alter ego.

Challenge(v, s) :
{ [Villain(v) ∧ Superhero(s) ∧ ∃p.alterEgo(s, p) ∧ livesIn(p, sc)]
∧ ¬[defeats(v, s)] � {livesIn(v, sc), enemy(v, s)}, CopyAll }

states that when villain v challenges superhero s and has not defeated
him, next he lives in the same city as s and is enemy of s.

ThreatenCity(v, c) :
{ [Villain(v) ∧ Superhero(s) ∧ ∃p.alterEgo(s, p) ∧ livesIn(p, c)]

� {enemy(v, s) ∧ livesIn(v, c)}, CopyAllExceptEnemy ,
[Villain(v) ∧ enemy(v�, s�)] ∧ ¬[v = v�] � enemy(v�, s�) }

states that when villain v threatens city c, then he becomes an enemy
of all and only superheroes that live in c.

Consider an initial ABox A0 = {Superhero(batman),
Villain(joker), alterEgo(batman, bruce), livesIn(bruce, gotham),
livesIn(batman, gotham), livesIn(joker, city1)}. In this state, bruce
and batman live in the same city, and batman is the alterego of
bruce but it is not known whether they denote the same individual.
Executing Challenge(joker, batman) in A0 generates a new ABox
with added facts enemy(joker, batman), livesIn(joker, gotham),
and gotham = city1 is implied by the functionality on livesIn.

A process Π might include the following rules:

[Character(p)] ∧ ¬[Superhero(p)] ∧ [livesIn(p, c)] �→
BecomeSH(p, c),

[Superhero(s) ∧ Character(c)] �→ Unmask(s, c),
[enemy(v, s)] �→ Fight(v, s),
[Villain(v) ∧ Superhero(s)] �→ Challenge(v, s),
[Villain(v) ∧ City(c)] ∧ ¬∃v�([Villain(v�) ∧ livesIn(v�, c)] ∧
¬[v = v�]) �→ ThreatenCity(v, c)

For instance, the first one states that a character can become a super-
hero if it is not already one.

4 KAB Semantics

The semantics of KABs is given in terms of possibly infinite tran-
sition systems that represents the possible evolutions of the KAB
over time as actions are executed according to the process. Notice
that such transition systems must be equipped with semantically rich
states, since a full KB is associated to them. Technically, a transition
system Υ is a tuple of the form (U, T,Σ, s0, abox ,⇒), where: U is
a countably infinite set of terms denoting individuals; T is a TBox;
Σ is a set of states; s0 ∈ Σ is the initial state; abox is a function that,
given a state s ∈ Σ, returns an ABox associated to s, which has as
individuals terms of U and conforms to T ; ⇒ ⊆ Σ×Σ is a transition
relation between pairs of states.
Transition system generated by a KAB. Given a KAB K =
(T,A0,Γ,Π), we define its (generated) transition system ΥK =
(U, T,Σ, s0, abox ,⇒) as follows:
• U is formed by all constants and all Skolem terms inductively

formed starting from ADOM(A0) by applying the Skolem func-
tions occurring in the actions in Γ;

• T is the TBox of the KAB;
• abox is the identity function (i.e., each state is simply an ABox);
• s0 = A0 is the initial state;
• Σ and ⇒ are defined by mutual induction as the smallest sets sat-

isfying the following property: if s ∈ Σ then for each rule Q �→ γ,
evaluate Q, and for each tuple θ returned, if DO(T, abox (s), γθ)
is consistent w.r.t. T , then s� = DO(T, abox (s), γθ) and s ⇒ s�.

Notice that ΥK is an infinite tree in general and, in fact, it is enough
to perform infinitely a single action to obtain an infinite tree. Hence
the classical results on model checking [11], which are developed for
finite transition systems, cannot be applied directly.

5 Verification

To specify dynamic properties over a semantic artifacts, we use a
first-order variant of µ-calculus [27, 24]. (Temporal) µ-calculus is
virtually the most powerful temporal logic used for model checking
of finite-state transition systems, and is able to express both linear
time logics such as LTL and PSL, and branching time logics such as
CTL and CTL* [11]. The main characteristic of µ-calculus is its abil-
ity of expressing directly least and greatest fixpoints of (predicate-
transformer) operators formed using formulae relating the current
state to the next one. By using such fixpoint constructs one can
easily express sophisticated properties defined by induction or co-
induction. This is the reason why virtually all logics used in verifi-
cation can be considered as fragments of µ-calculus. Technically, µ-
calculus separates local properties, asserted on the current state or on
states that are immediate successors of the current one, and proper-
ties talking about states that are arbitrarily far away from the current
one [27]. The latter are expressed through the use of fixpoints.

In this work, we use a first-order variant of µ-calculus, where we
allow local properties to be expressed as EQL queries, and at the
same time we allow arbitrary first-order quantification across states.
Given the nature of EQL queries used for formulating local proper-
ties, first-order quantification must range over terms denoting indi-
viduals. Formally, we introduce the logic µLA defined as follows:

Φ −→ Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | �−�Φ | Z | µZ.Φ

where Q is a possibly open EQL query, and Z is a second order
predicate variable (of arity 0). We make use of the following ab-
breviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2),
[−]Φ = ¬�−�¬Φ, and νZ.Φ = ¬µZ.¬Φ[Z/¬Z]. The formulae
µZ.Φ and νZ.Φ respectively denote the least and greatest fixpoint
of the formula Φ (seen as the predicate transformer λZ.Φ). As usual
in µ-calculus, formulae of the form µZ.Φ (and νZ.Φ) must obey to
the syntactic monotonicity of Φ wrt Z, which states that every occur-
rence of the variable Z in Φ must be within the scope of an even num-
ber of negation symbols. This ensures that the least fixpoint µZ.Φ (as
well as the greatest fixpoint νZ.Φ) always exists.

The semantics of µLA formulae is defined over possibly infinite
transition systems �U, T,Σ, s0, abox ,⇒�. Since µLA also contains
formulae with both individual and predicate free variables, given a
transition system Υ, we introduce an individual variable valuation
v, i.e., a mapping from individual variables x to U, and a predicate
variable valuation V , i.e., a mapping from the predicate variables Z
to a subset of Σ. With these three notions in place, we assign mean-
ing to formulae by associating to Υ, v, and V an extension function
(·)Υv,V , which maps formulae to subsets of Σ. Formally, the extension
function (·)Υv,V is defined inductively as follows:

(Q)Υv,V = {s ∈ Σ | ANS(Qv, T, abox(s)) = true}
(¬Φ)Υv,V = Σ \ (Φ)Υv,V

(Φ1 ∧ Φ2)
Υ
v,V = (Φ1)

Υ
v,V ∩ (Φ2)

Υ
v,V

(∃x.Φ)Υv,V = {s ∈ Σ | ∃t.t ∈ ADOM(abox(s)) and s ∈ (Φ)Υv[x/t],V }
(�−�Φ)Υv,V = {s ∈ Σ | ∃s�.s ⇒ s� and s� ∈ (Φ)Υv,V }

(Z)Υv,V = V (Z)

(µZ.Φ)Υv,V =
�
{E ⊆ Σ | (Φ)Υv,V [Z/E] ⊆ E}

Here Qv stands for the query obtained from Q by substituting its
free variables according to v.8 Intuitively, (·)Υv,V assigns to such con-
structs the following meaning:
• The boolean connectives have the expected meaning.
• The quantification of individuals is done over the objects of the

“current” ABox.
• The extension of �−�Φ consists of the states s such that for some

state s� with s ⇒ s�, we have that Φ holds in s�, while the exten-
sion of [−]Φ consists of the states s such that for all states s� with
s ⇒ s�, Φ holds in s�.

• The extension of µX.Φ is the smallest subset Eµ of Σ such that,
assigning to Z the extension Eµ, the resulting extension of Φ is
contained in Eµ. That is, the extension of µX.Φ is the least fixpoint
of the operator (Φ)Υv,V [Z/E], where V [Z/E] denotes the predicate
valuation obtained from V by forcing the valuation of Z to be E .

• Similarly, the extension of νX.Φ is the greatest subset Eν of Σ
such that, assigning to X the extension Eν , the resulting extension
of Φ contains Eν . That is, the extension of νX.Φ is the great-
est fixpoint of the operator (Φ)Υv,V [X/E]. Formally, (νZ.Φ)Υv,V =
�
{E ⊆ Σ | E ⊆ (Φ)Υv,V [Z/E]}.

Example 2 An example of µLA formula is:

νX.(∀x.[Superhero(x)] ⊃ µY.([alterEgo(x, x)] ∨ �−�Y)) ∧ [−]X

It states that, along every path, it is always true, for each superhero,
that there exists an evolution that eventually leads to unmask him.

When Φ is a closed formula, (Φ)Υv,V does not depend on v or V ,
and we denote the extension of Φ simply by (Φ)Υ . A closed formula
Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ . In this case, we write Υ, s |=
Φ. A closed formula Φ holds in Υ, denoted by Υ |= Φ, if Υ, s0 |=
Φ. We call model checking verifying whether Υ |= Φ holds.

Two transitions systems are behaviourally equivalent if they sat-
isfy exactly the same µLA formulas. To formally capture such an
equivalence, we make use of the notion of bisimulation [23], suit-
ably extended to deal with query answering over KBs.

For transition systems Υ1 = �U, T1,Σ1, s01, abox1,⇒1� and
Υ2 = �U, T2,Σ2, s02, abox2,⇒2�, a bisimulation between Υ1 and
Υ2 is a relation B ⊆ Σ1 × Σ2 such that: (s1, s2) ∈ B implies that:
1. (T1, abox (s1)) and (T2, abox (s2)) are logically equivalent,

i.e., for each ABox assertion α1 ∈ abox (s1) we have that
(T2, abox (s2)) |= α1, and for each ABox assertion α2 ∈
abox (s2) we have that (T1, abox (s1)) |= α2;

2. if s1 ⇒1 s�1 then there exists s�2 such that s2 ⇒2 s�2 and
(s�1, s

�
2) ∈ B;

3. if s2 ⇒2 s�2 then there exists s�1 such that s1 ⇒1 s�1 and
(s�1, s

�
2) ∈ B.

We say that two states s1 and s2 are bisimilar, if there exists a
bisimulation B such that (s1, s2) ∈ B. Two transition systems Υ1

with initial state s01 and Υ2 with initial state s02 are bisimilar if
(s01, s02) ∈ B. The following theorem states that the formula evalu-
ation in µLA is indeed invariant wrt bisimulation, so we can equiva-
lently check any bisimilar transition systems.

Theorem 3 Let Υ1 and Υ2 be two bisimilar transition systems.
Then, for two states s1 of Υ1 and s2 of Υ2 (including the initial

8 Notice that it is built in the semantics of EQL queries that if v substitutes
some free variable with an element of U not occurring in abox(s), then
ANS(Qv, T, abox(s)) = false (cf. Sec. 2). However, this does not hap-
pen for the KAB generated transition system by construction, due to the
preservation of equality between domain individuals, which is reflexive.

ones) that are bisimilar, for all closed µLA formulas Φ, we have that
s1 ∈ (Φ)Υ1 iff s2 ∈ (Φ)Υ2 .

Proof. The proof is analogous to the standard proof of bisimulation
invariance of µ-calculus [27], though taking into account our bisim-
ulation, which guarantees that ECQs are evaluated identically over
bisimilar states.

We observe that in this invariance result, we make no use of the re-
striction on existentially quantified individuals belonging to the “cur-
rent” active domain. However, we enforce this restriction to be able
to talk only about individuals that are explicitly mentioned in the
ABoxes of the transition system (i.e., in the active domain of the
transition system) and not those that are implicitly present because
of the congruence of equalities.

Making use of such a notion of bisimulation, we can redefine
the transition system generated by KAB K = (T,A0,Γ,Π) while
maintaining bisimilarity, by modifying the definition of ΥK =
�U, T,Σ, s0, abox ,⇒� given in Section 4 as follows. (i) We mod-
ify DO() so that no Skolem term t� is introduced in the generated
ABox A� if in the current ABox9 A there already is a term t such
that (T,A) |= t = t�. (ii) If the ABox A� = DO(T, abox (s), γθ)
obtained from the current state s is logically equivalent to the ABox
abox (s��), for some already generate state s��, we do not generate a
new state, but simply add s ⇒ s�� to ΥK.

6 Weakly Acyclic KABs

Verification of KABs is undecidable in general. Indeed, we have:

Theorem 4 Verification of CTL reachability-like formulas of the
form µZ.(N(a) ∨ �−�Z) (with N an atomic concept and a an indi-
vidual occurring in A0) on KABs with empty TBoxes and actions that
make use only of UCQs (no negation nor equality) is undecidable.

Proof. By reduction to answering boolean UCQs in a relational
database under a set of tuple-generating dependencies (TGDs),
which is undecidable [15].

Hence it is of interest to isolate interesting special cases in which
verification is decidable. Next, we introduce a notable class of KABs
that enjoys such a property. In particular, we show that a suitable
syntactic restriction, which resembles the notion of weak acyclicity in
data exchange [15]10, guarantees boundedness of ABoxes generated
by the execution of the nKAB, and in turn decidability of verification.

To do so, we introduce the edge-labeled directed dependency
graph of a KAB K = (T,A0,Γ,Π), defined as follows. Nodes,
called positions, are obtained from the TBox T: there is a node for
every concept name N in T , and two nodes for every role name P
in T , corresponding to the domain and to the range of P . Edges are
drawn by considering every effect specification [q+] ∧ Q− � A�

of each action contained in Γ, tracing how values are copied or con-
tribute to generate new values as the system progresses. In particular,
let p be a position corresponding to a concept/role component in the
rewriting rew(q+) of q+ with variable x. For every position p� in
A� with the same variable x, we include a normal edge p → p�. For
every position p�� in A� with a Skolem term f(�t) such that x ∈ �t, we
include a special edge p

∗−→ p��. We say that K is weakly-acyclic if
its dependency graph has no cycle going through a special edge.
9 Note that all terms that are present in the current ABox are preserved in the

new ABox, together with equalities between terms.
10 We use the original definition of weak acyclicity. However, our results

depend only on the ability of finding a finite bound for the chase. So, other
variants of weak acyclicity, such as [21, 22], can also be adopted.

enemy,1

enemy,2alterEgo,1

alterEgo,2Character

SuperHero

livesIn,1 livesIn,2Villain

defeats,1

defeats,2

City

* *

Figure 2. Weakly acyclic dependency graph for Example 1.

Theorem 5 Verification of µLA properties for a weakly acyclic KAB
is decidable in EXPTIME in combined complexity.

Proof. We can define a simplified KAB, such that the size of its
ABoxes bounds the size of those of the original KAB, and then relate
the execution of such simplified KAB to the chase of a set of TGDs.
If the original KAB is weakly acyclic, so is such a set of TGDs, hence
we can apply the bound in [15]. Since all ABoxes are bounded, this
implies that we can generate a finite-state transition system which is
bisimilar to ΥK, and do verification there. The number of states of
ΥK is at most exponential in the size of the KAB. Hence the result
follows, considering the model checking algorithm for µ-calculus on
finite-state transition systems [27, 11].

Example 3 The KAB of Example 1 is weakly acyclic. Its depen-
dency graph, shown in Figure 2, does not contain any cycle going
through special edges. For readability, self-loops are not shown in
the Figure (but are present for all nodes), and dashed edges are used
to compactly represent the contributions given by the rewriting of the
queries. E.g., the dashed edge form Villain to Character denotes that
for every outgoing edge from Character, there exists an outgoing
edge from Villain with the same type and target. Hence, w.r.t. weak
acyclicity dashed edges can be simply replaced by normal edges.

The restriction imposed by weak acyclicity (or variants) is not too
severe, and in many real cases KABs are indeed weakly acyclic or
can be transformed into weakly acyclic ones at cost of redesign. In-
deed, if a KAB is not weakly acyclic, it indefinitely generates new
values from the old ones, which then depend on a chain of unbound-
edly many previous values. In other words, current values depend on
an unbounded number of old values that are arbitrarily far in the past.
If this is not the case, then the KAB can in principle be rewritten into
a weakly acyclic one. While such unbounded systems exist in theory,
e.g., Turing machines, higher level processes, as those in business
process management or service-oriented modeling, do not typically
require such an unboundedness in practice. How to systematically
transform systems into weakly acyclic ones remains an open issue.

7 Conclusions

In this paper we have studied verification of knowledge and action
bases, which are dynamic systems constituted by a knowledge base
expressed in description logic, and by an action specification that
changes the knowledge base over time. We have obtained an inter-
esting decidability result by relying on the notion of weak acyclicity,
based on a connection with the theory of chase of TGDs in relational
databases. With this at hand, it becomes of interest to study refined
action specifications that guarantee better elaboration tolerance (ad-
dressing the frame, ramification, and qualification problems) [26].

Acknowledgements. This research has been partially supported by
the ICT Collaborative Project ACSI (Artifact-Centric Service Inter-
operation), funded by the EU under FP7 ICT Call 5, 2009.1.2, grant
agreement No. FP7-257593.

REFERENCES

[1] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev, ‘The
DL-Lite family and relations’, J. of Artificial Intelligence Research, 36,
1–69, (2009).

[2] The Description Logic Handbook: Theory, Implementation and Appli-
cations, eds., F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
Peter F. Patel-Schneider, Cambridge University Press, 2003.

[3] F. Baader, S. Ghilardi, and C. Lutz, ‘LTL over description logic ax-
ioms’, ACM Trans. on Computational Logic, 13(3), (2012).

[4] B. Bagheri-Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and
P. Felli, ‘Foundations of relational artifacts verification’, in Proc. of
BPM, volume 6896 of LNCS, pp. 379–395. Springer, (2011).

[5] F. Belardinelli, A. Lomuscio, and F. Patrizi, ‘Verification of deployed
artifact systems via data abstraction’, in Proc. of ICSOC, (2011).

[6] O. Burkart, D. Caucal, F. Moller, and B. Steffen, ‘Verification of infinite
structures.’, in Handbook of Process Algebra. Elsevier Science, (2001).

[7] D. Calvanese, G. De Giacomo, Domenico L., M. Lenzerini, A. Poggi,
M. Rodrı́guez-Muro, and R. Rosati, ‘Ontologies and databases: The
DL-Lite approach’, in 5th Int. Reasoning Web Summer School, volume
5689 of LNCS, 255–356, Springer, (2009).

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
‘EQL-Lite: Effective first-order query processing in description logics’,
in Proc. of IJCAI, pp. 274–279, (2007).

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
‘Tractable reasoning and efficient query answering in description log-
ics: The DL-Lite family’, J. of Automated Reasoning, 39(3), 385–429,
(2007).

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati, ‘Actions
and programs over description logic knowledge bases: A functional ap-
proach’, in Knowing, Reasoning, and Acting: Essays in Honour of Hec-
tor Levesque, College Publications, (2011).

[11] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking, The MIT
Press, Cambridge, MA, USA, 1999.

[12] D. Cohn and R. Hull, ‘Business artifacts: A data-centric approach to
modeling business operations and processes’, IEEE Bull. on Data En-
gineering, 32(3), 3–9, (2009).

[13] E. Damaggio, A. Deutsch, and V. Vianu, ‘Artifact systems with data
dependencies and arithmetic’, in Proc. of ICDT, pp. 66–77, (2011).

[14] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, ‘Automatic verification of
data-centric business processes’, in Proc. of ICDT, (2009).

[15] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, ‘Data exchange: Se-
mantics and query answering’, Theoretical Computer Science, 336(1),
89–124, (2005).

[16] H. Katsuno and A. Mendelzon, ‘On the difference between updating a
knowledge base and revising it’, in Proc. of KR, pp. 387–394, (1991).

[17] H. J. Levesque, ‘Foundations of a functional approach to knowledge
representation’, Artificial Intelligence, 23, 155–212, (1984).

[18] F. Lin and R. Reiter, ‘State constraints revisited’, J. of Logic Program-
ming, 4(5), 655–678, (1994).

[19] H. Liu, C. Lutz, M. Milicic, and F. Wolter, ‘Reasoning about actions us-
ing description logics with general TBoxes’, in Proc. of JELIA, (2006).

[20] H. Liu, C. Lutz, M. Milicic, and F. Wolter, ‘Updating description logic
ABoxes’, in Proc. of KR, pp. 46–56, (2006).

[21] B. Marnette and F. Geerts, ‘Static analysis of schema-mappings ensur-
ing oblivious termination’, in Proc. of ICDT, pp. 183–195, (2010).

[22] M. Meier, M. Schmidt, F. Wei, and G. Lausen, ‘Semantic query opti-
mization in the presence of types’, in Proc. of PODS, (2010).

[23] R. Milner, ‘An algebraic definition of simulation between programs’, in
Proc. of IJCAI, pp. 481–489, (1971).

[24] D. Park, ‘Finiteness is mu-ineffable’, Theoretical Computer Science, 3,
173–181, (1976).

[25] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati, ‘Linking data to ontologies’, J. on Data Semantics, (2008).

[26] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems, The MIT Press, 2001.

[27] C. Stirling, Modal and Temporal Properties of Processes, Springer,
2001.

[28] H. van Ditmarsch, W. van der Hoek, and B. Kooi, Dynamic epistemic
logic, Springer, 2007.

[29] V. Vianu, ‘Automatic verification of database-driven systems: a new
frontier’, in Proc. of ICDT, pp. 1–13, (2009).

[30] F. Wolter and M. Zakharyaschev, ‘Temporalizing description logic’, in
Frontiers of Combining Systems, Studies Press/Wiley, (1999).

This document is a copy of the accepted manuscript, published by
IOS Press.

Hariri, B. B., Calvanese, D., De Giacomo, G., De Masellis, R.,

Felli, P., and Montali, M. Verification of description logic knowledge
and action bases. In ECAI, pp. 103–108 (2012).

doi:10.3233/978-1-61499-098-7-103.

The final publication is available at
ebooks.iospress.nl

@inproceedings{ECAI12,

Author = {Babak Bagheri Hariri and Diego Calvanese and

Giuseppe {De Giacomo} and Riccardo {De Masellis} and

Paolo Felli and Marco Montali},

Booktitle = {ECAI},

Pages = {103-108},

Title = {Verification of Description Logic Knowledge and Action Bases},

Year = {2012},

ee = {http://dx.doi.org/10.3233/978-1-61499-098-7-103}}

http://dx.doi.org/10.3233/978-1-61499-098-7-103
http://ebooks.iospress.nl/publication/6956

	Introduction
	Knowledge Base Formalism
	Knowledge and Action Bases
	KAB Semantics
	Verification
	Weakly Acyclic KABs
	Conclusions

